
Continuous Integration 

Best Practices in Agile 

Environments

Ben Reich @ AgileSparks



Who Am I?

www.linkedin.com/in/benreich

E-mail: ben@agilesparks.com

years leadership experience in software 

development & startup operations with 

Gantt charts

7 Years of searching and finding ways to 

improve life quality, predictability and 

efficiency

http://www.linkedin.com/in/benreich
http://www.linkedin.com/in/


Ideas and best practices on 

implementing continuous 

integration in an agile way

What is this about?



Continuous Integration 101

Code

Repository

Production Clone 

Build

Auto

Test

Change
Auto

Builder

Feedback
Publish

Build

• Small and Frequent changes

• Fast and immediate build

• Immediate feedback



So, why is it agile?



But: Is a bunch of programmers 

constantly mixing some code 

together really getting us where 

we want to be?



The Challenges of CI

• Distance from the end user

• Automatic tests are difficult

• Large and complex products

• Diverse organization

• Insufficient review

• Inter-team synchronization issues



You know its 

becoming irrelevant 

if:

Nobody is consuming 

it and people are 

waiting for your “real 

release”







“Holy Place” Culture – Done 

means Released

• Identify the “holy place”

• Designated delivery target

• Always up and running

• As Releasable as possible

• Replica of Production

• Demo-able and accessible

• Identify the Stakeholder

• Represents the customer

• Is motivated to succeed

• Can deliver UAT

• Has the bandwidth to review



Put it where its accessible, demoable, won’t break but will be updated 

regularly in days 



The Delivery Gap

• Manual testing takes longer and 

there is no synchronization

• Developers need to program before 

testers need to test

• Large projects need constant 

integration testing

• Too many changes can disrupt the 

flow



Ingredients to Fill the GAP

WIP Limits Time Box

Agile Communication



Case Study – The Demo Cycle

• 8 man team

• 1 month sprint

• 1 week demo cycle

• 1 week deployment cycle

• Typically 2-4 user stories deployed per week

Day 1 Day 2 Day 3 Day 4 Day 5

Coordinate

Commit

Test

Commit

Test

Commit

Test

Commit

Test

Evaluate

Freeze

Demo

Decide

Deploy



The Continuous Delivery Train 

Station Cycle

The Holy 

Trunk

Branch

Integration Area

Weekly

Branch

Deploy

Holy PlaceTeam

Commits

Tests

Branch
Updated

Weekly

Branch
Deploy

Commits

Tests



The Continuous Delivery Train 

Station Cycle

The Holy 

Trunk

Branch

Integration Area

Weekly

Branch

Holy PlaceTeam

Commits

Tests

Branch
Last 

Good

Branch
Deploy

Commits

Tests



The Continuous Delivery Train 

Station Cycle

The Holy 

Trunk

Branch

Integration Area

Weekly

Branch

Holy PlaceTeam

Commits

Tests

Branch
Last 

Good

Branch

Commits

Tests









Electronic WIP dashboard



Large Projects - Scrum of 

Scrum
• Frequency – 1 to 3 days

• What is discussed?
– What has your team done since we last met?

– What will your team do before we meet again?

– Is anything slowing your team down or getting in their way?

– Are you about to put something in another team’s way?

• The last two items will feature:
– Broken APIs

– Synchronization issues

– Current build status

– Story and Epic issues



Working with Large Remote 

Teams



Learning from Open Source

• Manage by committee

• Dedicate resources to CI

• Set strict rules and enforce them

• Enforce and encourage 

communication

• Never go home with a broken build



Rules of engagement -

Example



Github Change log – Social 

coding



Source Control Management 

Recipes

Eshel Brosh

1 trunk – No Deviations

Quiz - Which Tree Looks More Target Oriented?



Incremental changes 

Main Trunk

Rev 1

Feat. 1 Rev 3Rev 2

Feat. 1 Rev 3

• Rule no. 1 – Do not branch for features.

• Rule no. 2 – If you breached Rule no. 1:

• Merge quickly – Put an expiration date on branches

• Only one level

• Police the branches

• Pull Trunk before merging

• Test branches before merging



Hiding New Features

• Not usually recommended

• Better than Branching

– Gradual integration

– Passes some tests

– Lower Stabilization Cost



Branching by Abstraction

Logic Functionality

Persistence Functionality



Branching by Abstraction



Branching by Abstraction

Old Layer New Layer



Branching by Abstraction



Auto testing – The Key to Success

Test Auto-

mated?

Build Tests

Unit Tests

Functional Test

Non-Functional tests

Acceptance tests

• Automate in order

• Automate the happy path 

first

• Maximize coverage with 

data and not complex 

scripting

• Look for repeating manual 

tests

• Spec test together with PO

• Automate when functionality 

is frozen



What Next?

• Visualize your value stream

• Choose tools
– Continuous Integration

– Auto testing

– Deployment

• Invest in automatic testing

• Tailor fit a process to your needs



www.linkedin.com/in/benreich

E-mail: ben@agilesparks.com

http://www.linkedin.com/in/benreich
http://www.linkedin.com/in/

