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Who Am I?

www.linkedin.com/in/benreich

E-mail: ben@agilesparks.com

years leadership experience in software 

development & startup operations with 

Gantt charts

7 Years of searching and finding ways to 

improve life quality, predictability and 

efficiency

http://www.linkedin.com/in/benreich
http://www.linkedin.com/in/


Ideas and best practices on 

implementing continuous 

integration in an agile way

What is this about?



Continuous Integration 101
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• Small and Frequent changes

• Fast and immediate build

• Immediate feedback



So, why is it agile?



But: Is a bunch of programmers 

constantly mixing some code 

together really getting us where 

we want to be?



The Challenges of CI

• Distance from the end user

• Automatic tests are difficult

• Large and complex products

• Diverse organization

• Insufficient review

• Inter-team synchronization issues



You know its 

becoming irrelevant 

if:

Nobody is consuming 

it and people are 

waiting for your “real 

release”







“Holy Place” Culture – Done 

means Released

• Identify the “holy place”

• Designated delivery target

• Always up and running

• As Releasable as possible

• Replica of Production

• Demo-able and accessible

• Identify the Stakeholder

• Represents the customer

• Is motivated to succeed

• Can deliver UAT

• Has the bandwidth to review



Put it where its accessible, demoable, won’t break but will be updated 

regularly in days 



The Delivery Gap

• Manual testing takes longer and 

there is no synchronization

• Developers need to program before 

testers need to test

• Large projects need constant 

integration testing

• Too many changes can disrupt the 

flow



Ingredients to Fill the GAP

WIP Limits Time Box

Agile Communication



Case Study – The Demo Cycle

• 8 man team

• 1 month sprint

• 1 week demo cycle

• 1 week deployment cycle

• Typically 2-4 user stories deployed per week
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The Continuous Delivery Train 
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Electronic WIP dashboard



Large Projects - Scrum of 

Scrum
• Frequency – 1 to 3 days

• What is discussed?
– What has your team done since we last met?

– What will your team do before we meet again?

– Is anything slowing your team down or getting in their way?

– Are you about to put something in another team’s way?

• The last two items will feature:
– Broken APIs

– Synchronization issues

– Current build status

– Story and Epic issues



Working with Large Remote 

Teams



Learning from Open Source

• Manage by committee

• Dedicate resources to CI

• Set strict rules and enforce them

• Enforce and encourage 

communication

• Never go home with a broken build



Rules of engagement -

Example



Github Change log – Social 

coding



Source Control Management 

Recipes

Eshel Brosh

1 trunk – No Deviations

Quiz - Which Tree Looks More Target Oriented?



Incremental changes 

Main Trunk

Rev 1

Feat. 1 Rev 3Rev 2

Feat. 1 Rev 3

• Rule no. 1 – Do not branch for features.

• Rule no. 2 – If you breached Rule no. 1:

• Merge quickly – Put an expiration date on branches

• Only one level

• Police the branches

• Pull Trunk before merging

• Test branches before merging



Hiding New Features

• Not usually recommended

• Better than Branching

– Gradual integration

– Passes some tests

– Lower Stabilization Cost



Branching by Abstraction

Logic Functionality

Persistence Functionality



Branching by Abstraction



Branching by Abstraction

Old Layer New Layer



Branching by Abstraction



Auto testing – The Key to Success

Test Auto-

mated?

Build Tests

Unit Tests

Functional Test

Non-Functional tests

Acceptance tests

• Automate in order

• Automate the happy path 

first

• Maximize coverage with 

data and not complex 

scripting

• Look for repeating manual 

tests

• Spec test together with PO

• Automate when functionality 

is frozen



What Next?

• Visualize your value stream

• Choose tools
– Continuous Integration

– Auto testing

– Deployment

• Invest in automatic testing

• Tailor fit a process to your needs
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