
#BugsZero
eliminating bugs by not creating them in the 

first place



Arlo Belshee

http://bit.ly/PromiscuousPairingPdf

http://bit.ly/AgileEngineeringFluency

http://bit.ly/NamingIsAProcess

http://bit.ly/BugsZeroSlides (this talk)

Team Craftsman, Legacy Code Mender, and Rabblerouser

Tableau & Innovating Teams

@arlobelshee, github/arlobelshee, http://arlobelshee.com/

http://bit.ly/PromiscuousPairingPdf
http://bit.ly/AgileEngineeringFluency
http://bit.ly/NamingIsAProcess
http://bit.ly/BugsZeroSlides


The #BugsZero Story:
Why We Think We Care



Why we Actually Care



Testers feel like





Product owners 
feel like





Developers feel 
like





The architecture 
feels like





Operations feels 
like





Sales has to 
pretend it is





But sales knows it 
actually is





Customers feel





And execs feel





But I Don’t Have Technical 
Debt



Good design
+

30 years of
careful changes



Quick Poll: How Many Bugs?

• Function named DoContentHit

• In service for 30+ years

• 26,000 lines

• Uses undocumented system calls

• Uses gotos liberally

• Monitors keyboard and mouse

• Need to add support for touch and pen



Quick Poll: How Many Bugs?

• Function named DoContentHit

• In service for 33+ years

• 18,000 lines, x2

• Uses undocumented system calls

• Uses gotos liberally, including jumps between functions

• Monitors keyboard, mouse, touch and pen

• Need to port to new OS, with different input devices



Bugs Annoy Me
I Decided to Stop Having Them



Bugs are Exciting

Like Kitchen Fires



Fires Have Causes



Caused by a cow?



1,000,000 Fires Prevented



When people build a 
building, are they 
thinking about fire 

prevention?



How Do We Prevent Bugs?



“

”

To take an action for a fixed period of 
time, such that the probability of 
some undesirable outcome is 

permanently reduced.

Arlo

Definition of “Prevent”



Action
+ Context

========
Outcome



Action
+ Context
+ Spread

========
Outcome



“

”

Anything that would frustrate, 
confuse, or disappoint some 

human, and is potentially visible to 
any human other than the one who 

created it.

Arlo

Definition of “Bug”



Actions that Can Cause Bugs

• Changing what a human receives

• Coding

• Designing

• Changing what a human expects

• Selling

• Gaining insight about customer intent / need

• Marketing

• UI / UX

• The world changing



Contexts that Turn Those Actions 
Into Bugs

Unreadable code Context sensitivity

Stuff developers don’t know
Miscommunications between

customer and developer



Situations that Spread Bugginess

Hurrying Accepting Errors

Repeating Mistakes High Risk of Change



People Notice Little

Habit Drives Most Actions



Bugs Don’t Come From 
What You Do



How do we 
change the habits 

that set our 
results?



Unreadable Code
• Read by Refactoring Habits

• Insight Loop

• Core 6 Refactorings

• Rename to store insights

• Extract Method to divide operations

• Intro Variable / Param / Field to divide 

data

• Inline to bring things together



Context Sensitivity
• Dependency Elimination Principle

• Dependency-Breaking Patterns

• TDD alone doesn’t help much

• Test by Refactoring Habits

• Test as Spec

• Acceptance Microtests

• Design by Refactoring Habits

• Replace Supplier with Supplies

• Breaking up God Classes iteratively

• Follow fields to find multiple 

responsibilities



What Developers 
Don’t Know

• Pairing, Tripling, or Mobbing

• Especially across roles

• Micro-habits & Mind-shifts

• Customer visits

• Listen to the code



Miscommunication on 
Path from Customer 

to Developer
• Shorten the path

• Customer telemetry

• Pair with technical support, on both 

coding and support cases



Hurrying
• Prevent the obvious bugs with common 

causes

• This is failure demand; it goes away 

when the failures go away



Accepting Errors
• Count “days since last accident”

• Eliminate triage

• All bugs are more important than 

remaining features

• Change incentives for PO



Repeating Mistakes
• Immediate stop the line

• Immediate 5-whys

• 15% solutions for each contributing 

factor, as tasks on the board

• Priority:

1. Mitigate

2. Prevent this class of bugs

3. Fix the bug

4. Anything other than this bug



High Risk of Change
• Disciplined Refactoring

• Build / Measure / Learn

• For product

• For team capability

• Roll back non-successful experiments

• Simple design beats extensible design



1. Fix the Environment that 
is causing errors



2. Learn from 

each bug to 

prevent more



DoContentHit (and its Application), 2 
Subsequent Releases



Thank You

http://bit.ly/PromiscuousPairingPdf

http://bit.ly/AgileEngineeringFluency

http://bit.ly/NamingIsAProcess

http://bit.ly/BugsZeroSlides (this talk)

@arlobelshee, github/arlobelshee, http://arlobelshee.com/

http://bit.ly/PromiscuousPairingPdf
http://bit.ly/AgileEngineeringFluency
http://bit.ly/NamingIsAProcess
http://bit.ly/BugsZeroSlides

