
Introduction to Agile

About Me

•  Senior Kanban/Agile Consultant / CTO @

www.AgileSparks.com

•  Blogging at http://YuvalYeret.com

•  Author of Holy Land Kanban

https://leanpub.com/holylandkanbanbestof

•  Speaking soon at:

What is Agile all about?

The IT Applications Development and
Maintenance Expectations & Landscape

Deliver more
with less

Achieve high
uptimes with

less

Lucy & the Chocolate Factory

http://www.youtube.com/watch?v=FGfplQ1FUFs

We live in uncertain times…

Where are your projects ?

http://www.derailleurconsulting.com/blog/complexity-and-noise-in-systems-development-projects

We need approaches that embrace uncertainty/complexity

http://www.derailleurconsulting.com/blog/complexity-and-noise-in-systems-development-projects

We are uncovering better ways of developing software by doing it and helping others do it.

Through this work we have come to value :

While there is value in the terms on the right

We value the items on the left more

)http://www.agilemanifesto.org)

Process and

 tools

Individuals and
interactions
 over

Comprehensive
documentation
Working software
 over

Following

 a plan

Responding to
change
 over

Contract
negotiation

Customer
collaboration
 over

Principles behind the Agile Manifesto

•  Our highest priority is to satisfy the customer

through early and continuous delivery of valuable
software.

•  Welcome changing requirements, even late in
development. Agile processes harness change for
the customer's competitive advantage.

•  Deliver working software frequently, from a couple
of weeks to a couple of months, with a preference
to the shorter timescale.

•  Business people and developers must work
together daily throughout the project.

•  Build projects around motivated individuals. Give
them the environment and support they need, and
trust them to get the job done.

•  The most efficient and effective method of
conveying information to and within a development
team is face-to-face conversation.

•  Working software is the primary measure of
progress.

•  Agile processes promote sustainable
development. The sponsors, developers, and
users should be able to maintain a constant pace
indefinitely.

•  Continuous attention to technical excellence and
good design enhances agility.

•  Simplicity--the art of maximizing the amount of
work not done--is essential.

•  The best architectures, requirements, and
designs emerge from self-organizing teams.

•  At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts
its behavior accordingly.

Minimize distance between Maker and User

Henrik Kniberg

People

(# of

handoffs)

0

1

2

3

4

5

Time (Feedback delay)

minutes
 hours
 days
 weeks
 months
 years

Maker
 User

1
 2
 3

People

(# of handoffs)

Time

(Feedback delay)

2:00 1:59 1:58 1:57 1:56 1:55 1:54 1:53 1:52 1:51 1:50 1:49 1:48 1:47 1:46 1:45 1:44 1:43 1:42 1:41 1:40 1:39 1:38 1:37 1:36 1:35 1:34 1:33 1:32 1:31 1:30 1:29 1:28 1:27 1:26 1:25 1:24 1:23 1:22 1:21 1:20 1:19 1:18 1:17 1:16 1:15 1:14 1:13 1:12 1:11 1:10 1:09 1:08 1:07 1:06 1:05 1:04 1:03 1:02 1:01 1:00 0:59 0:58 0:57 0:56 0:55 0:54 0:53 0:52 0:51 0:50 0:49 0:48 0:47 0:46 0:45 0:44 0:43 0:42 0:41 0:40 0:39 0:38 0:37 0:36 0:35 0:34 0:33 0:32 0:31 0:30 0:29 0:28 0:27 0:26 0:25 0:24 0:23 0:22 0:21 0:20 0:19 0:18 0:17 0:16 0:15 0:14 0:13 0:12 0:11 0:10 0:09 0:08 0:07 0:06 0:05 0:04 0:03 0:02 0:01 Done

History of key Lean/Agile Frameworks

Kanban – 2010s

Evolve into Lean/
Agile

Focus on the flow

Scrum – 2000s

Jump into Lean/Agile

Still the leading classic agile approach

Extreme Programming – 90s

Lean/Agile Engineering practices

Bring in the right practices at the right time, but ignore at your own risk!

Scrum in a nutshell

Henrik Kniberg - Crisp

19

January
 April

Split your organization

Split your product

Split time

Optimize business value

Optimize process

$

$$$

Burndown

Unplanned	
 items

Not
checked	
 out Done!	
 :o)

Write
failing
test

DAO

DB
design

Integr
test

Migration	

tool

Write
failing
test

GUI
spec

Tapestry spike
Impl.

migration

2d

Code
cleanup

Deposit

2d1d 0.5d
1d

2d

8d

1d 2d

2d

Backoffice
Login

Backoffice
User	
 admin

Write
failing
test

3d

2d

1d
2d

Impl
GUI

1dIntegr.
with

JBoss
2d

Write
failing
test

3d

Impl
GUI

6d

Clarify
require-
ments

2d

GUI
design
(CSS)

1d

Fix memory leak(JIRA 125)2d
Sales support

3d Write
whitepaper

4d

SPRINT	
 GOAL:	
 Beta-­‐ready	
 release!

Next

WithdrawPerf	
 testWithdraw

checked	
 out

Write
failing
test

Large group spending a long time building a huge thing

Small team spending a little time building a small thing

... but integrating regularly to see the whole

2009-08-29

orem ipsum dolor sit amet, nse ctetur adi pis
cing elit nisl

2009-09-01

orem ipsum dolor sit amet, co nse ctetur adi
pis cing elit nisl

2009-09-02

orem ipsum dolor sit amet, nse ctetur adi pis

elit nisl

Analysis Development Acceptance Prod Next

Definition of Done:
• Customer accepted
• Ready for production

Ongoing Done

Definition of Done:
• Code clean & checked in on trunk
• Integrated & regression tested
• Running on UAT environment

Ongoing Done Ongoing Done

Definition of Done:
• Goal is clear
• First tasks defined
• Story split (if necessary)

2 3 3 2

Feature / story

= completed

= blocked

= who is doing this right
now

2009-08-20 2009-09-30

(description)

•  Panicfeatures
(should be swarmed and kept moving.
Interrupt other work and break WIP
limits as necessary)

•  Priority features
•  Hard deadline features

(only if deadline is at risk)
•  Oldest features

2009-09-03

ipsum dolor sit amet, co nse ctetur adi pis cing elit nisl

2009-09-02

orem ipsum dolor sit amet, co nse

2009-08-27

orem ipsum dolor sit amet, ctetur adi pis cing

elit nisl

2009-08-27

orem ipsum dolor sit amet, adi pis cing elit
nisl

2009-08-20

orem olor sit amet, co nse ctetur adi pis cing
elit nisl 2009-08-30

orem ipsum dolor sit amet, co adi pis cing elit
nisl

2009-09-08

2009-08-20

orem ipsum dolor sit amet, co nse ctetur adi

pis cing elit nisl

2009-08-25

2009-08-22

orem ipsum dolor sit amet, co

2009-08-25

orem ipsum dolor sit ctetur adi pis cing elit
nisl

Task / defect
Hard deadline
(if applicable)

Date when added to board

orem ipsum dolor sit amet, co nse ctetur

orem ipsum dolor sit amet, co nse ctetur
orem ipsum dolor sit amet, co nse ctetur

orem ipsum dolor sit amet, co nse ctetur orem ipsum dolor sit amet, co nse ctetur
orem ipsum dolor sit amet, co nse ctetur

orem ipsum dolor sit amet, co nse ctetur
orem ipsum dolor sit amet, co nse ctetur

orem ipsum dolor sit amet, co nse ctetur

orem ipsum dolor sit amet, co nse ctetur
orem ipsum dolor sit amet, co nse ctetur

orem ipsum dolor sit amet, co nse ctetur

(description)

(description)

(description) Why

(description)
Who is analyzing / testing

right now

= priority

= panic

What to pull first

xxxx kjd dj d xxx

Kanban kick-start example
Henrik Kniberg www.crisp.se/kanban/example

version 1.2
2009-11-16

(description)

orem ipsum dolor sit amet, co nse ctetur

2009-08-26

orem adi pis cing elit nisl

orem ipsum dolor sit amet, co nse ctetur

=task =defect

20

Not ”horizontal” increments

Henrik Kniberg

DB

Server

Client

1

2

3

1
 2
 3
 4

value

”Vertical” increments!

Henrik Kniberg

DB

Server

Client
 1

5

2
 3

1
 4
3
2

value

Ideally – use Feature
Teams

Henrik Kniberg

Client team

C
 C
 C

Test team

T
 T
 T

DB team

D
 D
 D

Server team

S
 S
 S

Feature team 1

C

C

S

D

T

T

C

S

D

T

Feature team 2

D

S

DB

Server

Client

User

Communities

of interest

At regular intervals, the team reflects
on how to become more effective, then
tunes and adjusts its behavior
accordingly.”
Agile Manifesto principle

Changes that Agile will drive:

•  Infrastructure Investments

(release automation, test automation, etc)

•  Evolve the organizational

(new roles, cross-functional teams, etc)

•  New skills

(Vertical story-slicing, agile architecture, XP engineering practices,
retrospectives, etc)

•  New habits
(Frequent customer interaction, frequent release, less specialization)

•  Transparency
(problems and uncertainty painfully visible rather than hidden)

Henrik Kniberg

What will happen if
we don’t do this?

But no need to do it
all at once

5. Build & Deployment
1.  Continuous Integration – automatic build running at

least nightly
2.  All code and artifacts are versioned using a single

scheme
3.  Build is trigged automatically upon code checked in
4.  Automated regression tests run as part of build and give

a green/red binary answer (no need for analysis to
determine success/failure)

5.  Frequent check-ins to common branch
6.  Build failures are addressed immediately. Repeated

build failures trigger a stop the line event

3. Individuals & Interactions
Feedback Loops
1.  All people involved in a work item work on it more or less

in the same time period (Developers, Testers, Functional/
Product) minimizing the overhead/waste from context
switching/recalling past work.

2.  All people involved in a work item (even across silos) can
collaborate directly with each other without third parties like
team leads in every coordination/communication loop enabling
faster decisions and more scalable operation.

3.  People working together act as a team with shared
accountability to end to end delivery thereby decisions are
more value than silo-focused

4.  Significant aspects of goals and rewards are oriented towards
team performance/goals (rather than individual performance)
driving collaboration not just individualism.

5.  Team environment is as collaboration friendly as possible
6.  Individuals are involved in performance feedback of the people

they are working with, to encourage teamwork

4. Engineering Practices
1.  There is a clear definition of what "Coding Done" means and people are

working according to it
2.  People are expected to write SOLID/CLEAN code and estimations reflect

it
3.  Automation coverage is planned and implemented as an integral part of

production code implementation
4.  Defects created as part of new development are fixed as early as possible

and in any case before considering that work item as done
5.  There is a Test Automation Pyramid strategy guiding Automation coverage

decisions (Preference to Unit Tests>>API tests>>UI tests)
6.  People are expected to refactor smelly code as part of "Coding Done“ and

estimations reflect it
7.  Functional Design is specified Test-Driven (ATDD/BDD)
8.  Sustained or improved code coverage is verified at build time using code

coverage analysis tools (e.g. Sonar)
9.  Team is pro-actively and methodically improving collective ownership
10.  All code is reviewed in small batches, gaps are closed within hours
11.  People have access to the tools they need to do effective SW engineering
12.  A prioritized backlog of Technical Debt (ugly code, missing tests, etc.) is

available and capacity is allocated to reducing it
13.  Team maintains a high level of Collective ownership - most tasks can be pulled

by many members of the team without a major effect on efficiency
14.  Technical Code Design is Test-Driven (TDD)
15.  Regression cycle costs days at most (due to high level of automation)

6. Empowered Teams and Individuals
1.  Daily planning meetings (a.k.a. Standups) are used by people to manage their day to day

work (instead of work scheduled by supervisors and pushed onto them)
2.  Autonomy - People have a high degree of control over the project day 2 day execution -

Choose tasks to pull, where to focus
3.  Reason/Intent is communicated as part of every requirement/work item, to increase motivation

as well as empower people to do the right thing for the context rather than blindly follow a
plan

4.  People pull to capacity - by using Team Estimation approaches or just pull to WIP
5.  Autonomy - People have a high degree of control over their personal & professional destiny
6.  The behavior that is incentivized (formally and informally) is aligned with lean/agile thinking

- Flow, Improvement, Trust, Whole Team, Low WIP, Safe to fail experiments, etc.
7.  People work in small teams (not more than 10, ideally around 5-7) enabling good

communication and direct collaboration as well as effective meetings and interaction
8.  Managers are pro-actively and methodically seeking ways to improve autonomy of teams and

individuals as a way to enable faster decisions as well as higher engagement/motivation
9.  People are given opportunity to improve their mastery of areas which interest them
10.  People can shape their work environment – technologies, facilities, etc.

2. Business Value Driven Development
1.  Product owner sees working software frequently and uses the feedback to adapt the

scope/timeline plan
2.  Work items are integrative and testable cross-cutting across the architecture if necessary

(e.g. User Stories). Done = Deployable and Performant/Secure, enabling real feedback/
learning.

3.  Work items are integrative testable & SMALL - can be delivered in days thereby tightening
the internal team level feedback loop

4.  frequent feedback from stakeholders/users is used to adapt the scope/timeline closing a real
feedback beyond the product owner.

5.  Escaping Defects and other kinds of Failure Demand (Waste) are analyzed using Five Whys or
another kind of root cause analysis process in order to determine reasons for missing them
earlier in the process.

6.  Value is delivered in iterative chunks using Minimally Marketable Features (MMFs) thereby
achieving business agility – faster time to market and keeping more options open to what will
be delivered after the current MMFs.

7.  Requirements that are Hypothesis are validated Using MVP/MVF in a fast learning loop that
includes Beta/Early Access programs or Continuous Delivery, in order to enable safe/cheap-
to-fail experiments about risky but worthy ideas.

8.  Feature Usefulness and Successfulness is evaluated as part of the development lifecycle.
Learning is applied to improve the feature and future ideas.

9.  Frequent Delivery to real users - up to 8 weeks apart
10.  Continuous Delivery - work items are deployed/activated/validated as part of the work life

cycle - in a matter of hours/days thereby minimizing the work done without feedback that it is
in the right direction

1. Visualize & Manage the Flow
1.  Visualize main Work types (using Kanban Board or similar) to create flow

awareness
2.  Definition of what Done (Working Tested Software) means is clear and

adhered to (“DoD”) so real flow is measured and so exceptions drive
discussion/improvement.

3.  Visualize who is working on what in order to be aware of level of multi
tasking and dependency on specific people.

4.  Commitment to finishing work over starting new (eventually reaching a
WIP level that “feels OK” for the team) to start to “weakly” constrain and
improve flow.

5.  Use flow diagrams/charts (e.g. CFDs) to provide predictability and insight into
flow

6.  Visualize and focus on blocked work so major flow efficiency issues are
addressed

7.  Visualize work that is queued/waiting between people/workflow states to start
raise to awareness reasons for queuing and identify options for reducing

8.  Awareness of Work Types and Work Items and differences in handling, in order
to enable expectation setting with different stakeholders for different needs &
allow people to make intelligent flow decisions according to the context

9.  Some areas in the flow have local work in process (WIP) limits - leading to
lower WIP and cycle times and more explicit opportunities to learn from the (lack
of) flow

10.  Visualize work variability and seek to reduce it (e.g. using Cycle Time Control
Charts) so that overall average cycle time is improved and there is less
uncertainty about velocity/cycle times enabling more aggressive planning

11.  Explicit WIP limit at workflow level - Single workflow full pull – catching more
flow problems and driving WIP/cycle time even lower.

12.  Next is re-prioritized continuously (no commitment in Next)- Deferred Pull
decisions (dynamic prioritization) in order to enable business agility.

13.  Definition of what “Ready for work” means is clear and adhered to in order to
minimize rework or blocks due to unready work occupying the WIP.

14.  Guidelines for how to pull work (selection from ‘Next’/prioritization of WIP) are
clear to everyone and adhered to so that most decisions can be decentralized
and made faster as well as driving discussion about how to work and resulting in
experiments/improvements

15.  Capacity is allocated to Investment Themes using work in process limits so that it
is possible to ensure certain investment in each theme.

7. Improve
1.  Regular Lessons Learned events

(frequency of no less than every 1-4
weeks) with actionable outcomes (e.g.
Retrospectives/Kaizen)

2.  People at all levels are highly aware and
involved in improvement activity

3.  Actionable Improvement Work is visualized
and managed using “Stop starting start
finishing”

4.  Leaders are aware of the current
operational capabilities (may require
metrics)

5.  Leaders have an operational capabilities
goal

6.  Team/Group knows the current process
challenge they are targeting

7.  Team/Group knows what obstacles are
preventing them from overcoming the
current process challenge, what is currently
being addressed and how

8.  Team/Group allocates capacity/time slots
for improvement work

9.  Team/Group uses models to look at their
condition and suggest experiments

Agile Depth

Team: Sky1

Date: Sep 2013

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2

3

4

5 6

7

1

6
4

3

4

2

2

1

http://www.slideshare.net/yyeret/leanagile-depth-assessment

http://www.agilesparks.com/AS%20Way

Current Trends – Spring 2014…

Patterns for Scaling Agile

DevOps

Aiming to break the legacy conflict between Dev &
Ops by leveraging lean/agile thinking/practices as
well as strong automation-focused tooling

Safety/Anzeneering

Protecting people as a core focus area to drive cultural
change - Protecting people underlies every
Lean or Agile practice. Reduce Technical Debt,
Sustainable Pace, Empower people, etc.

Frameworks enabling agility from demand to
delivery, across programs and portfolios –
based on experiences scaling agile in recent
years

What is DevOps?

•  Working together across Silos with the same goals

and same measures of success/failure

•  Providing modern working tools that enable smooth

collaboration and frequent delivery of value all the
way from ideation to production and operation

•  If Agile is about better collaboration and flow between
Business and the Dev side of IT, DevOps extends
that to the Ops side as well.

•  You will hear terms like Continuous Delivery/
Deployment, Infrastructure as Code, Environments as
a service

Tech Safety

consider these common injuries to software makers:

•  Alteration Anxiety: apprehensive uneasiness associated with making changes

•  Antique Agony: mental anguish from working with old technology

•  Brain Hernia: straining your brain to understand code with high conceptual

weight

•  Browser Bruise: pain caused by the blow of a browser bug

•  Bug Burn: feeling burned by a defect, particularly one that injured users

•  Fractured Flow: feeling interrupted causing an inability to focus

•  Fragility Frustration: dissatisfaction with that which is easily and perpetually

broken

•  Merge Misery: suffering caused by difficult merges of code

•  Outage Ordeal: severe stress caused by a major failure or interruption

•  Release Rage: exhausting, manual release to production that robs one of family

time, sleep, joy

•  Schedule Stress: tension associated with a deadline

http://www.industriallogic.com/blog/techsafety/

Anzeneering???

•  Knowledge Work Lean/Agile

–  Kanban protects us from bottlenecks and decreased flow via visualized work,
limited work-in-process and classes of service.

–  Scrum Teams w/ Self Organization - Effective Delegation / Decentralized
Control protect us from micro-management and frustration of being stuck
waiting for answers

–  Sustainable pace protects us from burnout, poor health and isolation.

–  Retrospectives protect us from repeating the same mistakes.

•  Product Development / R&D Lean Agile Specifically

–  Continuous deployment protects us from stressful, error-prone releases while

enabling safe, high-speed production improvements.

–  Extreme Programming's technical practices protect us from complexity,

stress and defects via simple design, automated testing, continuous builds,
test-driven development, refactoring and pair-programming.

–  Lean UX protects us from poor user experiences via interaction design and
usability evaluations.

–  Lean Startups protect our time and money via minimum viable products/
features, validated learning and innovation accounting.

http://www.industriallogic.com/blog/anzeneering/

Some scaling examples

Inbar will talk about SAFe as an
alternative

MMF Board

Accelerate & Improve feedback/collaboration by creating a

flow of Stories within Features

(Team Agile Can be Kanban, Scrum, ScrumBan)

Deliver an end to end flow of

PO
 PO
 PO

Tribe

Tribe lead

PO
 PO
 PO
 PO

Tribe

Chapter

Chapter

Tribe lead

PO

Chapter

Chapter
 Guild

Agile Teams at Scale – The Spotify Model

http://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/

key Lean/Agile Frameworks

Kanban – 2010s

Evolve into Lean/
Agile

Focus on the flow

Scrum – 2000s

Jump into Lean/Agile

Still the leading classic agile approach

Extreme Programming – 90s

Lean/Agile Engineering practices

Bring in the right practices at the right time, but ignore at your own risk!

Current Trends – Spring 2014…

Patterns for Scaling
Agile

DevOps

Aiming to break the legacy conflict between Dev &
Ops by leveraging lean/agile thinking/practices as
well as strong automation-focused tooling

Safety/Anzeneering

Protecting people as a core focus area to drive cultural
change - Protecting people underlies every
Lean or Agile practice. Reduce Technical Debt,
Sustainable Pace, Empower people, etc.

Frameworks enabling agility from demand to
delivery, across programs and portfolios –
based on experiences scaling agile in recent
years

Summary

•  Understand WHY you want to be more agile, rally your

people around this reason and INVITE them to join you on
the journey

–  Deal with Stress? Improve Safety? Business Agility? Improve

productivity? Quality?

•  Understand WHAT are your options

–  Scrum? Kanban? SAFe? Revolution? Evolution? Start with
engineering practices? Add them on the way?

•  Plan to learn and adapt along the way – use agile to
become agile

•  Relatively simple to understand, Non-trivial to practice.

AgileSparks

•  Sparking Sustainable Delivery and

Improvement Approaches that help
organizations deliver more value while
enjoying the journey

•  Inspire others to improve their way of working by
helping them invite new exciting relevant and
useful ways of thinking and doing into their
context in a way that focuses on value and is
sticky and sustainable

•  Public Training – Exposing the community to
exciting new ways to improve work and creating
the practitioner community to support
introduction and usage of those approaches
inside organizations

•  Planning, Training, On the job coaching and
supporting improvement programs

•  Contact us at www.agilesparks.com or
info@agilesparks.com

