
A Software Tester's Travels from the Land of the Waterfall to the Land of Agile

and Kanban

In my work, I have come across many software testing organizations/groups. Some
use the waterfall method and may be in the first stages of exposure to Agile-based
methods. Some are on the journey to switch between methods, and some have
already been using Agile and are looking for ways to do this more effectively. In this
article, I will try to describe the experience of a typical software tester when his
organization decides to move to Agile.

First, let's look at a typical day of a software
tester who uses the waterfall method. A version
(or a project) is designed in stages. During the
early stages, software testers are involved very
little. They plan the stages of the tests, write test
documents and prepare themselves for the day
when the version will be ready for testing.
During these stages, software testers may still
be occupied with previous versions.

As the day for the tests approaches, tension mounts. Development teams begin to
test the integration of the version in order to see if things work together. Usually, the
version is not ready to be transferred for tests on the scheduled date. The integration
still has problems. More time passes and the software tester is ready for the worst.
He will have less time to complete the tests and, because the tests are always at the
end, he already knows what the solution will be and who will be blamed since, in
spite of the hours of overtime and the insane pressure,
the version will be rejected. "Why do we always have a
bottleneck at the software tests? They always delay our
version! "

Given this dynamic, which almost always repeats itself, it

is no wonder that the software tester sees himself as a

"last defense", and when it's time to perform the tests, he

fights valiantly to find bugs, make sure they are repaired,

and finds he is frustrated when a lot of bugs that he found

are not corrected in the version.

Why aren’t the bugs corrected? Because we are behind

schedule, and if we fix them, we'll need to do another

round of regression. We don’t have full automation so that a round of regression is

very expensive. Why is there no automation? Because, if we get the version at the

last minute, how can we manage to do automation? And the one who makes

automation is sitting on the side, valiantly trying to complete a gap of years of writing

code, and no one is trying to make his life easier.

Another fact that the software tester notices is that the longer the bug has been

contained in the version, the longer it takes to find the source of the problem, and

there is less chance that it will be fixed. Why?

Figure 1 Cost of Quality - Applied Software Measurement: Global Analysis

of Productivity and Quality - Capers Jones

After examination of a large number of projects, it was found that most of the bugs

were entered during the coding phase (surprise, right?). If we look at when they are

discovered, we see that most bugs are typically found during functional testing and

system testing. If much time elapses between stages - as in the waterfall method,

where we finish all the coding of all the contents and then go through the stages of

testing - the price of fixing a bug rises significantly. In other words, we have a

problem here of Late Feedback.

This leads to two possibilities - either we "sanctify" the quality and miss the deadline

of the project, or we "sanctify" the due date and find ways to compromise quality. We

“waive“ more and more bugs or hide them under the carpet. Anyone who has written

Release Notes and sat in a "Bug Waivers" meeting for a Revision knows what I'm

talking about. I confess that I have dealt with these disgraceful activities and often I

have had to explain to software testers why this compromise is necessary, and why

they still need to continue to test, even though not all the bugs are fixed.

Whoever has participated long enough and often enough in these projects, starts to

look for another way. The Agile world provides an interesting alternative. In Agile,

instead of moving the entire contents together through the stages of work

(specification, development, testing, etc.), we choose small batches and each time

move them through all the work stages. For example, if I have a project with 20

features, instead of coding all of them and then testing them, I will first choose the

feature with the highest priority, specify code and then test it. Only when I feel it is

ready for release, will I go on to the next feature.

Moreover, Agile recommends working in teams in which these activities are carried

out jointly. A team contains representatives of all the specialties required to take a

need/idea and transform it from “demand” to “working and tested.”

How does the work of a typical software tester who works in agile look? The tester is

part of the team of developers with various specialties. The team works in short

iterations (sometimes called sprints). Every two - three weeks, the team will meet to

plan what content/story they will focus on in the next iteration. The team decides

what will be developed in the iteration, how the work will be divided among them and

start the iteration. During the iteration, the team meets every day and each member

shares with the rest of the team his status and what inhibits him, so that team

members can help each other in their group assignment. They use Visibility tools

such as Task Board, Burn down, Burn up, so that everyone will understand where

they stand: are we moving in the right direction, and where to focus effort to

succeed. The goal is that there will be a challenging, but doable, target, which the

team can achieve without "killing themselves".

If you look at the load on the software tester, the goal is to go from insane loads at

the end of a version, together with relatively “dead" periods during development of

the version, to a reasonable workload throughout the version.

So far, the theory.

What is the typical experience of a software tester in an organization that works in

Agile? It really depends on what the starting point is. Organizations moving to Agile

from a good balance between testers and developers, with good automation

coverage and a good infrastructure for developing automation, will reach the desired

state relatively quickly.

But, most organizations start from a different point. Usually

we see a lack of balance, with insufficient number of testers

relative to developers, and minimal automation coverage. In

this situation, the transition to the Agile approach of focusing

on the content step by step, quickly surfaces a number of

problems.

For example, we typically see developers outpacing the

testers. The Agile approach says that everyone should pretty

much run together – A Whole Team Approach. Gaps that

are created lead to feedback problems later. Agile

emphasizes the need and advantage of feedback as soon as possible - Early

Feedback. Actually Agile, and, more extensively, Lean, guide us to examine any

decision process that we adopt to see if it promotes earlier feedback and reduces the

amount of work that we started and haven’t finished - in other words "Inventory" we

have in the process.

Typical software testers have seen all kinds of methods to deal with the above

problem of rate differences, for example:

 Removing content from the version after it is developed. Developers have

already developed something, and now they are waiting for it to be tested. At

this stage, managers come and ask them to remove this content from the

version because there is no testing time. The typical developer will be

frustrated. Some of them direct the frustration toward the test group, which all

the time delays them and causes them to waste time.

 Release low-quality content. It is tested late in the process because of the

long queue at the entrance to tests, when it is difficult to fix all the bugs and

decide to release so we can say "we made it to the finish line", but everyone

knows that it is a short-lived success. The software tester feels frustrated

because in the field they will now say that the version is of low quality and

blame him.

 At the end of the version, when the queue at the entrance to tests has

become very long the developers are given part of content to test. The

developers are frustrated because it is not their role... The software testers

are troubled because they don’t rely so much on the developers to perform

tests.

I don’t know about you, but none of the above options appeals very much to me...

The Agile approach says something else. At first, it might be more difficult and more

painful, but it will pay off later. Agile says not to open a gap. Do what is necessary at

all times to minimize gaps and move at the same pace. How do you make this

happen?

First, let's make the testing phase as efficient as possible. If testing is identified as a

bottleneck, let’s concentrate our efforts and resources on improving it, with the

understanding that it will contribute to improving the bottom line for us (inspired by

the Theory of Constraints by Eli Goldratt). For example, we'll seriously invest in

automation to reduce the manual regression effort that takes a sizable chunk of the

testing time especially as we desire more and more frequent regression testing in

order to get earlier feedback. Another example - avoid a situation where the testers

compete for resources in the test laboratory. Start by asking the software tester how

can we save him time or what most wastes his time.

By the way, since we have already mentioned automation, if we rely on the testers

alone to write automation tests for the system we will probably increase the gap

between development and testing because developing automation takes more time

than running manual tests. . The solution here is the "whole team

approach". Automation and rate differences are a challenge to all the

team and the entire group, and it is probably better that developers

will help write automation to decrease the gap. If developers invest

time in developing automation, most probably their own pace will be

lower, and if we have automation that allows reducing regression

cycle time, it is likely that the testing pace will go up. And if we

combine automation with "continuous integration", meaning

continually executing integration-compilation, installation and testing

every day or even every check-in, we reach a situation where when the tester takes

code for testing, there is a much higher probability that it is ready for testing and will

not "break" right at the start and waste everyone’s time on ping pongs of fix & test.

Involving the developers in Automation is basically an example of subordination of

the other team activities to help streamline testing and make it more efficient.

Another example is performing more tests at the unit level (Unit Testing) by

developers to reduce the number of bugs and cycles that require involvement of the

testers. Beyond that, when planning work, you should think of the automation

pyramid. In Agile we want to rely as much as possible on Unit Tests, a little less on

Acceptance Tests, and much less on the level of the user interface (GUI), with the

aim that only 5-10 % of coverage tests will be through the GUI. This assumes that

the business logic and functionality of the system can be checked without going

through the user interface. A transition to the agile test automation pyramid is one of

the keys to success in automation, which reaches high coverage and also provides

viable maintenance over time. The more we can push coverage to the base of the

pyramid, the less it will cost us to develop and maintain the automation.

One of the most common concerns of organizations that need to balance rates as

part of the Whole Team Approach is that balancing rates will pull the entire

organization down to the lowest common denominator. This concern is valid. If, for

that matter, we specify that the team or organization must not create a gap and

should "march to the beat" of the bottleneck, there is a good chance that the faster

specialties will “forget" how to run fast. The recommended solution is to define

clearly the set of subordination tasks and expect the fastest teams to utilize their

excess capacity to perform as many subordination tasks as possible (e.g.,

automation), so that, in the end, they do not slow down.

Another possibility is to integrate the risk management approach with testing (Risk

Based Testing). You can define that content of less dangerous areas will be tested

by developers or will be tested only once a bigger set of functionality (e.g. a

minimum marketable feature) is ready or even just as part of the stabilization cycle

(yes, late feedback… this is why we call this Risk Based Testing…), while areas at

risk will be tested as soon as possible by software testers (early feedback). That

could produce a bypass route that deals with the pace gap problem and prevents

slowing down the entire organization.

The bottom line is that, when entering the world of Agile as a software tester, we

must remember a few things. First of all, it is a journey; it does not solve all the

problems in the first month and not everything will be like it is in the books. It is

important to remember the principles and try to make all decisions based on these

principles. How can we advance toward Early Feedback in the most dangerous

areas? How can we reduce the amount of inventory in process - the amount of code

developed, but not yet tested? Let us assume that there is trust and a common

desire to succeed, and we agree to get help that enables us to meet our challenges

and to streamline.

Software testers have a significant role in the agile environment - they help to

represent the client and his expectations from the team. Even if some of the work

being done by testers today is not necessarily done by them as part of an agile team

- it allows them to move from reactive defense to proactive attack. What does this

allow? Participation in defining functional content involved in the process earlier -

e.g., by a method such as Acceptance Test Driven Development, freeing time for

Exploratory Testing earlier and identification of more advanced bugs.

Software testers whose companies have adopted agile fall into two main groups:

those which leverage this move to advance the level of testing in their organization

and thus become really big supporters of the move, and those who are still afraid of

the move and its implications for their roles. The beginning of the changeover is a

deeper understanding of the method and tools. I hope that in this article I have

provided a glimpse into the fascinating world of testing in an agile environment.

Credits/References

http://blog.mountaingoatsoftware.com/the-forgotten-layer-of-the-test-automation-

pyramid

http://www.slideshare.net/ehendrickson/agile-testing-u

http://www.amazon.com/Agile-Testing-Practical-Guide-Testers/dp/0321534468

About Yuval Yeret

Yuval is a senior consultant at AgileSparks, who focuses on the subjects of agile

tests, Kanban and management of large projects and programs. Yuval comes from

the world of development management, with more than 17 years’ experience in

software development and IT. Yuval writes a blog on software development and

Agile at www.yuvalyeret.com

About AgileSparks

AgileSparks provides complete solutions in agile /Scrum/Kanban and helps

companies improve their project management capabilities, with a focus on software

development and integrations. AgileSparks’ services include training and

implementation at the client’s site as well as public and private courses on Agile

Testing, Scrum, Kanban, Project Management, and Product Management in the

agile environment, and more. http://www.agilesparks.com

http://blog.mountaingoatsoftware.com/the-forgotten-layer-of-the-test-automation-pyramid
http://blog.mountaingoatsoftware.com/the-forgotten-layer-of-the-test-automation-pyramid
http://www.slideshare.net/ehendrickson/agile-testing-u
http://www.amazon.com/Agile-Testing-Practical-Guide-Testers/dp/0321534468
http://www.yuvalyeret.com/
http://www.agilesparks.com/

